Flocks in Universal and Boolean Algebras
نویسندگان
چکیده
We propose the notion of flocks, which formerly were introduced only in based algebras, for any universal algebra. This generalization keeps the main properties we know from vector spaces, e.g. a closure system that extends the subalgebra one. It comes from the idempotent elementary functions, we call “interpolators”, that in case of vector spaces merely are linear functions with normalized coefficients. The main example, we consider outside vector spaces, concerns Boolean algebras, where flocks form “local” algebras with a sparseness similar to the one of vector spaces. We also outline the problem of generalizing the Segre transformations of based algebras, which used certain flocks, in order to approach a general transformation notion.
منابع مشابه
Filter theory in MTL-algebras based on Uni-soft property
The notion of (Boolean) uni-soft filters in MTL-algebras is introduced, and several properties of them are investigated. Characterizations of (Boolean) uni-soft filters are discussed, and some (necessary and sufficient) conditions for a uni-soft filter to be Boolean are provided. The condensational property for a Boolean uni-soft filter is established.
متن کاملOn some classes of expansions of ideals in $MV$-algebras
In this paper, we introduce the notions of expansion of ideals in $MV$-algebras, $ (tau,sigma)- $primary, $ (tau,sigma)$-obstinate and $ (tau,sigma)$-Boolean in $ MV- $algebras. We investigate the relations of them. For example, we show that every $ (tau,sigma)$-obstinate ideal of an $ MV-$ algebra is $ (tau,sigma)$-primary and $ (tau,sigma)$-Boolean. In particular, we define an expansion $ ...
متن کاملOmega-almost Boolean rings
In this paper the concept of an $Omega$- Almost Boolean ring is introduced and illistrated how a sheaf of algebras can be constructed from an $Omega$- Almost Boolean ring over a locally Boolean space.
متن کاملFrom lambda-Calculus to Universal Algebra and Back
We generalize to universal algebra concepts originating from lambda calculus and programming in order first to prove a new result on the lattice of λ-theories, and second a general theorem of pure universal algebra which can be seen as a meta version of the Stone Representation Theorem. The interest of a systematic study of the lattice λT of λ-theories grows out of several open problems on lamb...
متن کاملDually quasi-De Morgan Stone semi-Heyting algebras II. Regularity
This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...
متن کامل